Physiology of CSF and Pathophysiology of Hydrocephalus

Presenter: Dr Nilesh S. Kurwale

Moderators:
Dr Ashish Suri
Dr Manmohanjeet singh

Introduction

Dynamic component of CNS

Invaluable tool to diagnosis

Physiological reservoir of human proteome

Reflects the physiologic state of CNS

Historical account

Hippocrates described fluid in brain
Galen described ventricles
Vesalius showed the anatomy
Megendi performed first cisternal puncture in animals
Quinke performed first LP
Dandy was credited first ventricular puncture
Quekensted did first cisternal puncture in humans.

Functions of CSF

Mechanical cushion to brain

Source of nutrition to brain

Excretion of metabolic waste products

Intracerebral transport medium

Control of chemical environment

Autoregulation of intracranial pressure

Production of CSF

Choroidal

Extrachoroidal

Ependyma

? Neighboring brain substance

Histology of choroid plexus

Facts of interest

 Only choroidal CSF production is tightly regulated active process

CSF secretion shows diurnal variation with peak in the morning.

Factors affecting production

Vascular bed autoregulation

Intracranial pressure

Brain metabolism

Drugs

Absorption of CSF

Arachanoid granulations

Along the olfactory nerves

Extracellular spaces in brain

Brain substance (glial cells).

Factors affecting absorption

Intracranial pressure

Quantitative dynamics

Daily secretion:

Total CSF volume:

Ventricular

Cisternal

CSF pathways

Techniques of CSF analysis

Lumbar puncture

Cisternal puncture

Ventricular puncture

Lumbar puncture

Diagnostic indications:
Infective pathology
Inflammatory pathology
Subarachanoid hemorrhage
Malignancy and spread
Pressure recordings
Cisternography, myelography,

Therapeutic indications:
 CSF drainage
 Drug delivery

Contraindications

Absolute
Posterior fossa mass
Coagulopahty, blood dyscrasias
Known spinal AVM

Relative
 Raised ICT (guarded LP)
 Local infection

Technique

Positioning

Cleaning and draping

Puncture

figure

Complications

Post LP headaches

Hematoma

Infection

Neural injury

Iatrogenic dermoids

Other methods

Cisternal puncture

Lateral cervical puncture

Ventricular puncture

Lateral cervical puncture

Ventriculostomy

Dandy`s point

Keen`s point

Frazier`s point

Kocher`s point

Dandy`s point

Keen`s point

Kocher`s point

Frazier`s point

Analysis

Glucose	60-90	≥ 0.66
Proteins	35mg/dl	0.005
Globulins	10-50 mg/L	0.001
RBC	0-1	
WBC	0-1 (L)	
Lactate	1.6	1.6

Diagnostic characteristics

Туре	Sugar	Cells	Lactate
Bacterial	Very low	Neutrophils	Increased
Fungal	low	L/N	-
Viral	Normal to low	L/N	-
Aseptic	Normal	Neutrophils	Normal
Post operative	Normal	Neutrophils (≥1000)	

Hydrocephalus

Definition

 Imbalance between production and absorption of CSF leading to accumulation of fluid in the ventricular system leading to elevation of intracranial pressure.

Epidemiology

Infantile HCP: 3-4 per 1000 LB

As a single congenital disorder: 0.9-1.5 per 1000 live births

Associated with SD: 1.3-2.9 per 1000 LB

Classification

Communicating
 AKA extraventricular,

Noncommunicating
 AKA obstructive

TriventricularBiventricular

Noncommunicating Hydrocephalus	Communicating Hydrocephalus	
I. Congenital lesions	I. Congenital lesions	
A. Aqueductal obstruction	A. Arnold-Chiari malformation	
(stenosis)	B. Encephalocele	
1. Gliosis	C. Leptomeningeal inflammations	
2. Forking	D. Lissencephaly	
3. True narrowing	E. Congenital absence of	
4. Septum	arachnoidal granulations	
B. Atresia of the foramina of	II. Acquired lesions	
Luschka and Magendie	A. Leptomeningeal inflammation	
(Dandy-Walker cyst)	1. Infections	
C. Masses	2. Hemorrhage	
1. Benign intracranial cysts	3. Particulate matter	
2. Vascular malformation	B. Masses	
3. Tumors	1. Tumors	
L Acquired lesions	2. Non-neoplastic masses	
	C. Platybasia	
A. Aqueductal stenosis (gliosis)	III. Oversecretion of CSF (choroid	
B. Ventricular inflammations and scars	plexus papilloma)	
C. Masses	piexus papitiona,	
1. Tumors		
2. Non-neoplastic masses		

TABLE 365-1 Classification of Hydrocephalus

Pathogenesis

Obstruction of CSF pathways leading to decreased absorption

Increased production

Increased venous pressure

Increased production

Choroid plexus papilloma

Decreased absorption

Due to anatomical block in the pathways

Block at arachanoid granulations level

Increased venous pressure

Evidence with this theory
VOGM
Experimental studies in animals
Evidence against this theory
Ligation of various sinuses doesn't cause HCP
Experimental studies

Pathology of hydrocephalus

Atrophy of white matter

Spongy edema of brain

Fibrosis of choroid plexuses

Stretching and denuding of ependyma

Fenestration of septum pellucidum

Thinning of interhemispheric commisures
Acute HCP

Cerebral, IV or cerebellar hematoma

Paraventricular tumors

Gunshots

Subarachanoid hemorrhage

Acute head injuries

Shunt malfunction.

Progression

Ventricular dilatation

Occipital and frontal horns f/b temporal horns

Anterior and posterior recess of third ventricle

Fourth ventricle

Third ventricular ballooning

Hydrocephalic edema

Available space in the cavity consumed

Stretching and denuding of ependyma

Edema of white matter

Mechanism

Stasis of brain interstitial fluid

Reflux of CSF into the periventricular area

Increase in cerebral capillary permeability

Progression

Dorsal angles of lateral ventricle
 3-6 hrs

Centrum semiovale19-24 hrs

Diffuseafterwards

Chronic HCP

Compensatory mechanisms in chronic HCP

Expansion of skull

Contraction of cerebral vascular volume

White matter atrophy and ventricular enlargement

Decreased rate of CSF formation.

Diversion of CSF flow to alternative pathways

Changes in cerebral circulation

Increased venous pressure
Delayed emptying of cerebral veins
Narrowing of cerebral arteries
Prolongation of circulation time
Reduced cerebral blood flow
Lowering of CMRO2
Reduced glucose metabolism

Clinical features

Expansibility of skull bones

Type of HCP

Duration of HCP

Pediatric hydrocephalus

Enlargement of head
Thin and glistening scalp
Tense, bulging fontanel
Dilated and tortuous scalp veins
Unilateral or bilateral abducens palsies
Cracked pot or Macewen`s sign
Hypopituitarism and growth retardation
Transillumination of skull

Adult acute HCP

Headache, nausea, vomiting

Alteration of sensorium

Visual obscurations

Perinaud's syndrome

Progression to herniation syndromes

Adult chronic HCP

Bifrontal generalized headache, vomiting Papilledema and secondary optic atrophy **Congnitive deficits** Unilateral or bilateral abducens palsy Upward gaze palsy Spastic quadriparesis, dysmetria, **Bitemporal hemianopia** Endocrine disturbances

Normal pressure hydrocephalus

"Hydrocephalus with normal CSF opening pressure on lumber puncture and absence of Papilledema"

Pathophysiology

Intermittent rise of CSF pressure causing ventricular dilatation.

Intraventricular pressure head is decreased

Basis of clinical symptoms

Gait problems

Urinary incontinence

Memory problems

Arrested hydrocephalus

Definitions
 CSF pressure has normalized

 Pressure gradient between ventricles and parenchyma has been dissipated

Ventricular size remains stable or decrease

New neurological deficits do not appear

Advancing psychomotor development with age.

Pediatric NPH

Enlarged head usually in or above ninth percentile History of delayed psychomotor development Mild to moderate mental retardation Glib verbal abilities Mild spastic paraparesis

Hydrocephalus ex vacuo

Cerebral atrophy and dilatation of sulci

Intracranial pressure is normal

Absence of periventricular edema

Absence of retrograde filling Isotope cisternography

Thank you